



Find exact Value of Sin 105°

Sin 105° = Sin 75°

Sin 75° = 45° + 30°

Sin 75° = Sin (45° + 30°) = Sin 45° (0530° + (0545° Sin 30°)

=
$$\frac{12}{2}$$
, $\frac{13}{2}$ + $\frac{12}{2}$, $\frac{1}{2}$ + $\frac{16+12}{4}$

Notice

We have Cotunctions with Complementary angles.

Sind the exact Value of

$$\tan \frac{\pi}{18} + \tan \frac{\pi}{9}$$

Do tou recognize that

 $1 - \tan \frac{\pi}{18} \cdot \tan \frac{\pi}{9}$

we have

 $\tan \left(\frac{\pi}{18} + \frac{2\pi}{29}\right)$
 $\tan \left(\frac{\pi}{18} + \frac{2\pi}{29}\right)$
 $= \tan \left(\frac{\pi}{18} + \frac{2\pi}{18}\right)$
 $= \tan \left(\frac{\pi}{18} + \frac{2\pi}{18}\right)$
 $= \tan \left(\frac{\pi}{18} + \frac{2\pi}{18}\right)$
 $= \tan \left(\frac{\pi}{18} + \frac{2\pi}{18}\right)$

Sind
$$\chi$$
:

Sin $\left(\frac{\pi}{2} - \chi\right) = \cos\left(\frac{\pi}{2} + 2\chi\right)$

Cosunctions

 $\chi + \frac{\pi}{2} = 0$

Simplify

 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \sin\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6}\right) + \cos\left(\chi - \frac{\pi}{3}\right) = 0$
 $\cos\left(\chi + \frac{\pi}{6$

Verify
$$\frac{\sin 3x}{\sin x \cos x} = 4\cos x - \sec x$$

Hint: $3x = 2x + x$

$$\frac{\sin 3x}{\sin x \cos x} = \frac{\sin(2x + x)}{\sin x \cos x} = \frac{\sin 2x \cos x + \cos 2x \sin x}{\sin x \cos x}$$

$$\frac{3\sin x \cos x \cdot \cos x + (\cos^2 x - \sin^2 x) \cdot \sin x}{\sin x \cos x}$$

$$\frac{3\sin x \cos x \cdot \cos x}{\sin x \cos x} + \frac{3\sin x \cos^2 x}{\sin x} = \frac{3\sin x \cos^2 x}{\sin x \cos x}$$

$$\frac{3\sin x \cos^2 x}{\sin x \cos x} + \frac{3\sin x \cos^2 x}{\sin x \cos x} = \frac{3\sin x}{\sin x \cos x}$$

$$\frac{3\sin x \cos^2 x}{\sin x \cos x} = \frac{3\sin x \cos x}{\sin x \cos x} = \frac{3\cos x}{\cos x}$$

$$= 3\cos x - \frac{1}{\cos x} + \frac{\cos^2 x}{\cos x} = 3\cos x - \frac{1}{\cos x} + \frac{\cos^2 x}{\cos x}$$

$$= 3\cos x - \frac{1}{\cos x} + \frac{\cos^2 x}{\cos x} = 3\cos x - \frac{3\cos x}{\cos x} - \frac{1}{\cos x}$$

$$= 4\cos x - \sec x$$

Sinx=
$$\frac{2}{5}$$
, 90° < x < 180°, Sind tan $\frac{\chi}{2}$

QII

The Recall

 $\tan \frac{\chi}{2} = \frac{1 - \cos \chi}{\sin \chi} = \frac{\sin \chi}{1 + \cos \chi}$
 $\tan \frac{\chi}{2} = \frac{1 - \cos \chi}{\sin \chi} = \frac{1 - \cos \chi}{2 + \cos \chi}$
 $\tan \frac{\chi}{2} = \frac{1 - \cos \chi}{\sin \chi} = \frac{1 - \cos \chi}{2 + \cos \chi}$

LCD=5

Cos
$$y = \frac{-2}{5}$$
, y is in QIII, Sind Sin 2y.

150° < y < 270°

Sin $2y = 2$ Siny Cos y
 $= 2 \cdot \frac{-\sqrt{21}}{5} \cdot \frac{-2}{5}$
 $= \frac{4\sqrt{21}}{25}$

$$\cos 2\chi = 2 \cos^2 \chi - 1 \implies \cos^2 \chi = \frac{1 + \cos 2\chi}{2}$$

$$\cos 2\chi = 1 - 2 \sin^2 \chi \implies \cos^2 \chi = \frac{1 - \cos 2\chi}{2}$$
Prove
$$\tan \chi = \frac{1 - \cos 2\chi}{1 + \cos 2\chi}$$

$$\tan \chi = \frac{\sin^2 \chi}{\cos^2 \chi} = \frac{1 - \cos 2\chi}{1 + \cos 2\chi}$$

$$\tan \chi = \frac{1 - \cos 2\chi}{\cos^2 \chi} = \frac{1 - \cos 2\chi}{1 + \cos 2\chi}$$

$$\tan \chi = \frac{1 - \cos 2\chi}{2}$$

Sin
$$(x+y)$$
 = Sin x cos y + cos x sin y
Sin $(x-y)$ = Sin x cos y - cos x sin y
Sin $(x+y)$ + Sin $(x-y)$ = 2 Sin x cos y
Divide by 2
Sin x cos y = $\frac{1}{2}$ $\left[Sin(x+y) + Sin(x-y) \right]$
Product - to - Sum formulas
Sin x cos y = $\frac{1}{2}$ $\left[Sin(x+y) + Sin(x-y) \right]$
(os x Sin y = $\frac{1}{2}$ $\left[Sin(x+y) - Sin(x-y) \right]$
Cos x Cos y = $\frac{1}{2}$ $\left[Cos(x+y) + Cos(x-y) \right]$
Sin x Sin y = $\frac{1}{2}$ $\left[Cos(x+y) - Cos(x+y) \right]$
Sin y Sin y = $\frac{1}{2}$ $\left[Cos(x+y) - Cos(x+y) \right]$
Recall = $\frac{1}{2}$ $\left[Cos(-2x) - Cos(x+y) \right]$
Recall = $\frac{1}{2}$ $\left[Cos(-2x) - Cos(x+y) \right]$

write 4 (054x (058x as product-to-Sum 4 (054x (058x = 4 ·
$$\frac{1}{2}$$
 [(05(4x+5x) + (05(4x-5x))]

= 2 [(0512x + (05(-4x))]

Cos(-0)=Cosox = 2 [(05(2x + Cos 4x))]

Find the exact Value of Cos 37.5° Sin 7.5° = $\frac{1}{2}$ [Sm(37.5° +7.5°) — Sin (37.5-7.5°)]

= $\frac{1}{2}$ [Sin 45° — Sin 30°]

= $\frac{1}{2}$ [$\frac{\sqrt{2}}{2}$ — $\frac{1}{2}$] = $\frac{1}{2}$. $\frac{\sqrt{2}}{2}$ — $\frac{1}{2}$ — $\frac{\sqrt{2}}{2}$ — $\frac{$

Sind the exact value of

2 Sin 52.5° Sin 97.5°

Sin U SinU =
$$\frac{1}{2}$$
 [Cos (U-V) - Cos (U+V)]

2 Sin 52.5° Sin 97.5° = $2 \cdot \frac{1}{2}$ [Cos (52.5°-97.5°) - (os 52595)

= Cos (-45°) - Cos 150°

= Cos 45° - (-Cos 30°)

= $\frac{12}{2}$ + $\frac{13}{2}$ = $\frac{12}{2}$ + $\frac{13}{2}$

Product - to - Sum Formulas

Sin
$$u \cos V = \frac{1}{2} \left[Sin(u+v) + Sin(u-v) \right]$$

(os $u \sin V = \frac{1}{2} \left[Sin(u+v) - Sin(u-v) \right]$

Cos $u \cos V = \frac{1}{2} \left[\cos(u+v) + \cos(u-v) \right]$

Sin $u \sin V = \frac{1}{2} \left[\cos(u-v) - \cos(u+v) \right]$

What about $sum - to - Product?$

V $sin x + sin y = 2 sin \frac{x+y}{2} \cos \frac{x-y}{2}$

Sin $u \sin V = \frac{1}{2} \left[\cos(u-v) - \cos(u+v) \right]$

Cos $u \cos V = \frac{1}{2} \left[\cos(u-v) - \cos(u+v) \right]$

What about $sum - to - Product?$

V $sin x + sin y = 2 sin \frac{x+y}{2} \cos \frac{x-y}{2}$

Cos $u \cos V = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$

Cos $u \cos V = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$

Cos $u \cos V = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$

Cos $u \cos V = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$

Cos $u \cos V = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$

Cos $u \cos V = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$

Sin A COS V=
$$\frac{1}{2}$$
 [Sin (U+V) + Sin (U-V)]

Let $u = \frac{x+y}{2}$ and $v = \frac{x-y}{2}$
 $v + v = \frac{x+y}{2} + \frac{x-y}{2} = \frac{x+y+x-y}{2} = \frac{2x}{2}$
 $v + v = \frac{x+y}{2} - \frac{x-y}{2} = \frac{x+y-(x-y)}{2} = \frac{x+y-x+y}{2} = \frac{x+y}{2}$

Sin A COS V= $\frac{1}{2}$ [Sin (U+V) + Sin (U-V)]

Sin $\frac{x+y}{2}$ Cos $\frac{x-y}{2} = \frac{1}{2}$ [Sin $x + \sin y$]

muttiply by $\frac{2}{2}$
 $v = \frac{x+y}{2}$ Cos $\frac{x-y}{2} = \frac{x+y}{2}$ = Sin $\frac{x+y}{2}$ Cos $\frac{x+y}{2}$ Cos $\frac{x-y}{2}$ = Sin $\frac{x+y}{2}$ Cos $\frac{x+y}{2}$ Cos $\frac{x-y}{2}$ = Sin $\frac{x+y}{2}$ Cos $\frac{x+y}{2}$ Co

Write
$$\cos 0x - \cos 2x$$
 as product.
 $\cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$
 $\cos 10x - \cos 2x = -2 \sin \frac{10x+2x}{2} \sin \frac{10x-2x}{2}$
 $= -2 \sin 6x \sin 4x$
Sind the exact Value of
 $\sin 75^{\circ} + \sin 15^{\circ} = 2 \sin \frac{75^{\circ}+15^{\circ}}{2} \cos \frac{75^{\circ}-15^{\circ}}{2}$
 $\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$
 $= 2 \sin 45^{\circ} \cdot \cos 30^{\circ}$
 $= 2 \sin 45^{\circ} \cdot \cos 30^{\circ}$

Show (as 100° - (as 200° = Sin 50°)

$$\cos \chi = -2 \sin \frac{\chi + y}{2} \sin \frac{\chi - y}{2}$$

$$\cos 100° - \cos 200° = -2 \sin \frac{100° + 200°}{2} \sin \frac{100° - 200°}{2}$$

$$= -2 \sin 150° \sin (-50°)$$

$$= -2 \sin 50°$$
Sin $|50° = \sin 50°$

$$= \sin 50°$$
Recall
$$\sin (-\alpha) = -\sin \alpha$$

Verify
$$\frac{\sin x + \sin y}{\cos x + \cos y} = \tan \left(\frac{x+y}{2}\right)$$

$$\frac{\sin x + \sin y}{\cos x + \cos y} = \frac{2 \cdot \sin \frac{x+y}{2} \cdot \cos \frac{x+y}{2}}{2 \cdot \cos \frac{x+y}{2}} \cdot \cos \frac{x+y}{2}$$

$$= \frac{\sin \frac{x+y}{2}}{\cos \frac{x+y}{2}} = \tan \left(\frac{x+y}{2}\right)$$

Verify

Sinx + Sin 2x + Sin 3x + Sin 4x + Sin 5x

Cosx + Cos2x + Cos3x + Cos4x + Cos5x

Sinx + Sin 5x = 2 Sin
$$\frac{x+5x}{2}$$
 Cos $\frac{x-5x}{2}$ = 2Sin 3x Cos2x

Sin2x + Sin4x = 2 Sin $\frac{2x+4x}{2}$ Cos2x + Sin3x Cosx

2Sin3x Cos2x + 2Sin3x Cosx + Sin3x Sin3x 2Cos2x + Cos3x Cos2x + Cos3x Cos2x + Cos3x Cos2x + Cos3x Cos2x

Cos 2x + Cos5x = 2 Cos $\frac{x+5x}{2}$ Cos2x + Cos3x Cos2x

Cos2x + Cos4y = 2 Cos $\frac{x+5x}{2}$ Cos2x + Cos3x Cos2x

Cos2x + Cos4y = 2 Cos $\frac{x+5x}{2}$ Cos2x + Cos3x Cos2x

Verify
$$\frac{\sin 40x}{\sin 9x + \sin x} = \frac{\cos 5x}{\cos 4x}$$

Hint:
$$10x = 2.5x$$

Sin
$$10\chi = \sin 2(5\chi) = 2 \sin 5\chi \cos 5\chi$$

$$\frac{1}{Sin9x + Sinx} = 2 Sin \frac{9x + x}{2} \cos \frac{9x - x}{2} = 2 Sin5x \cos 4x$$

$$\frac{\sin 10x}{\sin 9x + \sin x} = \frac{2\sin 5x \cos 5x}{2\sin 5x \cos 9x} = \frac{\cos 5x}{\cos 9x}$$

More on inverse Sunctions:

$$J = \sin^{-1} \chi$$

$$-1 \le \chi \le 1$$

Sind
$$\cos\left(\frac{1}{2}\sin^{-1}\frac{-5}{13}\right) = \cos\frac{1}{2}\alpha$$

Let $\alpha = \sin^{-1}\frac{-5}{13} = \cos\frac{\alpha}{2}$
 $\sin\alpha = \frac{-5}{13} = \pm \sqrt{\frac{1+\cos\alpha}{2}}$
 $= \pm \sqrt{\frac{1+\frac{12}{13}}{2}}$
 $= +\sqrt{\frac{1+\frac{12}{13}}{2}}$
 $= -\frac{13+12}{26}$
 $= -\frac{5}{126}$ $= \frac{5\sqrt{26}}{26}$



















