Math 241
Winter 2023
Lecture 12

find exact value of $\operatorname{Cos} 195^{\circ}$.

$$
\begin{aligned}
\cos 15^{\circ}=\cos \left(45^{\circ}-30^{\circ}\right) & =\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ} \\
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}+\sqrt{2}}{4} \\
\cos 195^{\circ}=-\cos 15^{\circ} & =-\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

find exact value of $\sin 105^{\circ}$

$$
\begin{aligned}
\sin 75^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right) & =\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ} \\
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

$$
\sin 105^{\circ}=\sin 75^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4}
$$

Notice
we have cofunctions with

$$
\sin 75^{\circ}=\cos 15^{\circ}
$$ Complementary angles.

find the exact value of

$$
\left.\begin{array}{rl}
& \frac{\tan \frac{\pi}{18}+\tan \frac{\pi}{9}}{1-\tan \frac{\pi}{18} \cdot \tan \frac{\pi}{9}} \quad \begin{array}{l}
\text { Do You recognize } \\
\text { we have } \\
\\
= \\
=\tan \left(\frac{\pi}{18}+\frac{2 \pi}{2} \frac{\pi}{9}\right) \quad \\
=\tan B
\end{array} \\
=\tan \left(\frac{\pi}{18}+\frac{2 \pi}{18}\right) \quad & \tan (A+\tan B
\end{array}\right)
$$

find x :

$$
\sin \left(\frac{\pi}{2}-x\right)=\cos \left(\frac{\pi}{2}+2 x\right)
$$

cofunctions

$$
\begin{aligned}
\frac{\pi}{2}(-x)+\frac{\pi}{2}(-2 x) & =\frac{\pi}{2} \\
x+\frac{\pi}{2}=0 & \rightarrow x=\frac{-\pi}{2}
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& \cos \left(x+\frac{\pi}{6}\right)+\sin \left(x-\frac{\pi}{3}\right)= \\
& \operatorname{Cos} x \cos \frac{\pi}{6}-\sin x \sin \frac{\pi}{6}+\sin x \cos \frac{\pi}{3}-\cos x \sin \frac{\pi}{3}= \\
& \operatorname{Cos} \frac{\pi}{6}=\sin \frac{\pi}{3}, \sin \frac{\pi}{6}=\cos \frac{\pi}{3} \quad \text { Cofunctions with } \\
& \\
& =0
\end{aligned}
$$

$$
\text { Verify } \frac{\sin 3 x}{\sin x \cos x}=4 \cos x-\sec x
$$

Hint: $3 x=2 x+x$

$$
\begin{aligned}
& \frac{\sin 3 x}{\sin x \cos x}=\frac{\sin (2 x+x)}{\sin x \cos x}=\frac{\sin 2 x \cos x+\cos 2 x \sin x}{\sin x \cos x} \\
& =\frac{2 \sin x \cos x \cdot \cos x+\left(\cos ^{2} x-\sin ^{2} x\right) \cdot \sin x}{\sin x \cos x} \\
& =\frac{2 \sin x \cos ^{2} x+\sin x \cos ^{2} x-\sin ^{3} x}{\sin x \cos x} \\
& =\frac{3 \sin x \cos ^{2} x-\sin ^{3} x}{\sin x \cos x}=\frac{3 \sin x \cos ^{2} x}{\sin x \cos x}-\frac{\sin ^{3} x}{\sin x \cos x} \\
& =3 \operatorname{sos} x-\frac{\sin ^{2} x}{\cos x}=3 \cos x-\frac{1-\cos ^{2} x}{\cos x} \\
& =3 \cos x-\frac{1}{\cos x}+\frac{\cos ^{2} x}{\cos x}=3 \cos x-\sec x+\cos x \\
& 4 \cos x-\sec x
\end{aligned}
$$

$\operatorname{Sin} x=\frac{2}{5}, \underbrace{90^{\circ}<x<180^{\circ}}_{\text {RI }}$, find $\tan \frac{x}{2}$

Recall

$$
\begin{gathered}
\tan \frac{x}{2}=\frac{1-\cos x}{\sin x}=\frac{1-\left(\frac{-\sqrt{41}}{5}\right)}{2 / 5}=\frac{5+\sqrt{21}}{2} \text { LCD=5}
\end{gathered}
$$

$\operatorname{Cos} y=\frac{-2}{5}, \quad \underbrace{y \text { is in QIII, }}_{180^{\circ}<y<270^{\circ}}$, find $\operatorname{Sin} 2 y$.

$$
\begin{aligned}
\sin 2 y & =2 \sin y \cos y \\
& =2 \cdot \frac{-\sqrt{21}}{5} \cdot \frac{-2}{5} \\
& =\frac{4 \sqrt{21}}{25}
\end{aligned}
$$

$$
\begin{aligned}
& \sin (x+y)=\sin x \cos y+\cos x \sin y \\
& \sin (x-y)=\sin x \cos y-\cos x \sin y \\
& \sin (x+y)+\sin (x-y)=2 \sin x \cos y \quad \text { Add }
\end{aligned}
$$

Divide by a

$$
\sin x \cos y=\frac{1}{2}[\sin (x+y)+\sin (x-y)]
$$

Product -to - Sum formulas

$$
\begin{aligned}
& \sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)] \\
& \cos u \quad \sin v=\frac{1}{2}[\sin (u+v)-\sin (u-v)] \\
& \cos u \cos v=\frac{1}{2}[\cos (u+v)+\cos (u-v)] \\
& \sin u \sin v=\frac{1}{2}[\cos (u-v)-\cos (u+v)] \\
& \begin{aligned}
& \sin 3 x \sin 5 x=\frac{1}{2}[\cos (3 x-5 x)-\cos (3 x+5 x)] \\
&=\frac{1}{2}[\cos (-2 x)-\cos 8 x] \\
& \text { Recall } \quad=\frac{1}{2}[\cos 2 x-\cos 8 x] \\
& \cos (-\alpha)=\cos \alpha \quad
\end{aligned}
\end{aligned}
$$

write $4 \cos 4 x \cos 8 x$ as product-to-Sum

$$
\begin{aligned}
4 \cos 4 x \cos 8 x & =4 \cdot \frac{1}{2}[\cos (4 x+8 x)+\cos (4 x-8 x)] \\
& =2[\cos 12 x+\cos (-4 x)] \\
\cos (-\alpha)=\cos \alpha & =2[\cos 12 x+\cos 4 x]
\end{aligned}
$$

find the exact value of

$$
\begin{aligned}
\cos 37.5^{\circ} \sin 7.5^{\circ} & =\frac{1}{2}\left[\sin \left(37.5^{\circ}+7.5^{\circ}\right)-\sin \left(37.5^{\circ}-7.5^{\circ}\right)\right] \\
& =\frac{1}{2}\left[\sin 45^{\circ}-\sin 30^{\circ}\right] \\
& =\frac{1}{2}\left[\frac{\sqrt{2}}{2}-\frac{1}{2}\right]
\end{aligned}=\frac{1}{2} \cdot \frac{\sqrt{2}-1}{2} .
$$

find the exact value of

$$
\begin{aligned}
& 2 \sin 52.5^{\circ} \sin 97.5^{\circ} \\
& \begin{aligned}
& \sin u \sin v=\frac{1}{2}[\cos (u-v)-\cos (u+v)] \\
& 2 \sin 52.5^{\circ} \sin 97.5^{\circ}=2 \cdot \frac{1}{2}\left[\cos \left(52.5^{\circ}-97.5^{\circ}\right)-\cos \left(52.5^{\circ} 07\right)^{5}\right) \\
&=\cos \left(-45^{\circ}\right)-\cos 150^{\circ} \\
&=\cos 45^{\circ}-\left(-\cos 30^{\circ}\right) \\
&=\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}=\frac{\sqrt{2}+\sqrt{3}}{2}
\end{aligned}
\end{aligned}
$$

Product -to - Sum Formulas

$$
\begin{aligned}
& \sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)] \\
& \cos u \sin v=\frac{1}{2}[\sin (u+v)-\sin (u-v)] \\
& \cos u \cos v=\frac{1}{2}[\cos (u+v)+\cos (u-v)] \\
& \sin u \quad \sin v=\frac{1}{2}[\cos (u-v)-\cos (u+v)]
\end{aligned}
$$ What about sum-to-Product?

$$
\begin{aligned}
\sqrt{\sin x+\sin y} & =2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} \\
\sin x-\sin y & =2 \cos \frac{x+y}{2} \sin \frac{x-y}{2} \\
\cos x+\cos y & =2 \cos \frac{x+y}{2} \cos \frac{x-y}{2} \\
\cos x-\cos y & =-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}
\end{aligned}
$$

$$
\sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)]
$$

Let $u=\frac{x+y}{2}$ and $v=\frac{x-y}{2}$

$$
\begin{aligned}
& u+v=\frac{x+y}{2}+\frac{x-y}{2}=\frac{x+y+x-y}{2}=\frac{2 x}{2}=x \\
& u-v=\frac{x+y}{2}-\frac{x-y}{2}=\frac{x+y-(x-y)}{2}=\frac{\pi+y-x+y}{2}=y \\
& \sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)] \\
& \sin \frac{x+y}{2} \cos \frac{x-y}{2}=\frac{1}{2}[\sin x+\sin y] \\
& \text { multiply by a } \\
& 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}=\sin x+\sin y
\end{aligned}
$$

write $\sin 3 x+\sin 3 x$ as product.

$$
\begin{aligned}
& \sin 3 x+\sin 7 x=2 \sin \frac{3 x+7 x}{2} \cos \frac{3 x-7 x}{2} \\
&=2 \sin 5 x \cos (-2 x) \\
& \text { Recall } \\
& \cos (-\alpha)=\cos \alpha \quad=2 \sin 5 x \cos 2 x
\end{aligned}
$$

write $\cos 10 x-\cos 2 x$ as product.

$$
\begin{aligned}
\cos x-\cos y & =-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2} \\
\cos 10 x-\cos 2 x & =-2 \sin \frac{10 x+2 x}{2} \sin \frac{10 x-2 x}{2} \\
& =-2 \sin 6 x \sin 4 x
\end{aligned}
$$

find the exact value of

$$
\begin{aligned}
\sin 75^{\circ}+\sin 15^{\circ} & =2 \sin \frac{75^{\circ}+15^{\circ}}{2} \cos \frac{75^{\circ}-15^{\circ}}{2} \\
\sin x+\sin y & =2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} \\
& =2 \sin 45^{\circ} \cdot \cos 30^{\circ} \\
& =22 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{6}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Show } \cos 100^{\circ}-\cos 200^{\circ}=\sin 50^{\circ} \\
& \cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2} \\
& \cos 100^{\circ}-\cos 200^{\circ}=-2 \sin \frac{100^{\circ}+200^{\circ}}{2} \sin \frac{100^{\circ}-200^{\circ}}{2} \\
& = \\
& \begin{aligned}
& \sin 150^{\circ}=\sin 30^{\circ}=\frac{1}{2}=-2 \sin 150^{\circ} \sin \left(-50^{\circ}\right) \\
& \operatorname{Recall} \\
& \sin (-\alpha)=-\sin \alpha
\end{aligned}
\end{aligned}
$$

Verify

$$
\begin{aligned}
& \frac{\sin x+\sin y}{\cos x+\cos y}=\tan \left(\frac{x+y}{2}\right) \\
& \frac{\sin x+\sin y}{\cos x+\cos y}=\frac{2 \cdot \sin \frac{x+y}{2} \cdot \cos \frac{x-y}{2}}{x \cdot \cos \frac{x+y}{2} \cdot \cos \frac{x-y}{2}} \\
&=\frac{\sin \frac{x+y}{2}}{\cos \frac{x+y}{2}}=\tan \left(\frac{x+y}{2}\right)
\end{aligned}
$$

$$
\text { Verify } \frac{\sin 70 x}{\sin 9 x+\sin x}=\frac{\cos 5 x}{\cos 4 x}
$$

Hint: $10 x=2.5 x$

$$
\begin{aligned}
& \frac{\sin 10 x=\sin 2(5 x)=2 \sin 5 x \cos 5 x}{\sin 9 x+\sin x=2 \sin \frac{9 x+x}{2} \cos \frac{9 x-x}{2}=2 \sin 5 x \cos 4 x} \\
& \frac{\sin 10 x}{\sin 9 x+\sin x}=\frac{2 \sin 5 x \cos 5 x}{2 \sin 5 x \cos 4 x}=\frac{\cos 5 x}{\cos 4 x}
\end{aligned}
$$

More on inverse functions:

$$
\begin{array}{ll}
y=\sin ^{-1} x & \Leftrightarrow x=\sin y \\
-1 \leq x \leq 1 & ,-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \\
y=\cos ^{-1} x & \Leftrightarrow x=\cos y \\
-1 \leq x \leq 1, & 0 \leq y \leq \pi
\end{array}
$$

$$
y=\tan ^{-1} x \Leftrightarrow x=\tan y
$$

$$
-\infty<x<\infty, \quad-\frac{\pi}{2}<y<\frac{\pi}{2}
$$

find $\quad \sin \left(2 \cos ^{-1} \frac{3}{5}\right)=\sin 2 \alpha$ Let $\alpha=\cos ^{-1} \frac{3}{5}=2 \sin \alpha \cos \alpha$

$$
\begin{gather*}
\cos \alpha=\frac{3}{5} \tag{24}\\
\frac{5}{\frac{5}{3}} d^{4}
\end{gather*}
$$

$$
=2 \cdot \frac{4}{5} \cdot \frac{3}{5}
$$

find $\cos \left(\frac{1}{2} \sin ^{-1} \frac{-5}{13}\right)=\cos \frac{1}{2} \alpha$
Let $\alpha=\operatorname{Sin}^{-1} \frac{-5}{13}=\operatorname{Cos} \frac{\alpha}{2}$

find exact Value of

$$
\begin{aligned}
& \tan \left(\sin ^{-1} \frac{3}{5}-\sin ^{-1} \frac{5}{13}\right)=\tan (\alpha-\beta) \\
& \text { Let } \alpha=\sin ^{-1} \frac{3}{5} \\
& \beta=\sin ^{-1} \frac{5}{13} \\
& =\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \\
& =\frac{\frac{3}{4}-\frac{5}{12}}{1+\frac{3}{4} \cdot \frac{5}{12}} \\
& \text { QI } \\
& \angle C D=48 \quad=\frac{16}{63} \\
& \sin \beta=\frac{5}{13} \\
& \text { QI }
\end{aligned}
$$

find exact value of $\cos \alpha \cos \beta+\sin \alpha \sin \beta$ $=\cos 15^{\circ}$ $=\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}+\frac{-1}{2} \cdot \frac{-\sqrt{2}}{2}=\frac{\sqrt{6}+\sqrt{2}}{4}=? ?$

Graph $y=\frac{1}{2} \cot ^{-1}(x+2)$
Shift left 2 units
Compress

$$
\cot ?=0
$$

$$
\frac{\cos ?}{\sin ?}=0 \quad \cos ?=0 \quad \frac{\pi}{2}
$$

